바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073

문서 클러스터링을 위한 학술지 논문의 구조적 초록 활용성 연구

Usability Analysis of Structured Abstracts in Journal Articles for Document Clustering

정보관리학회지, (P)1013-0799; (E)2586-2073
2012, v.29 no.1, pp.331-349
https://doi.org/10.3743/KOSIM.2012.29.1.331
최상희 (대구가톨릭대학교)
이재윤 (경기대학교)

  • 다운로드 수
  • 조회수

초록

구조적 초록은 학술 논문의 주제를 표현하는 역할을 하여 학술 논문을 처리하는데 중요한 요소로 인식되어왔다. 이 연구에서는 구조적 초록을 구성하는 세부 필드의 속성을 4개로 분석하고 초록의 구조를 활용하여 문서 클러스터링에 적용할 수 있는 가능성을 고찰고자 하였다. 구조적 초록의 필드 속성을 문서 클러스터링에 적용한 결과 클러스터링 기법간의 편차가 있었으나 연구 목적이 제공하는 정보량에 비해 주제성이 커서 클러스터링 성능에 가장 큰 영향을 미치고 있는 것으로 나타났다. 또한 분석 결과 특정 필드에 특화되어 출현하는 필드 종속적인 단어가 발생하는 것으로 나타나 필드 종속적인 단어를 배제하고 집단내 평균연결 기법을 적용하였을 때는 클러스터링의 성능이 개선되는 것으로 분석되었다.

Abstract

Structured abstracts have been regarded as an essential information factor to represent topics of journal articles. This study aims to provide an unconventional view to utilize structured abstracts with the analysis on sub fields of a structured abstract in depth. In this study, a structured abstract was segmented into four fields, namely, purpose, design, findings, and values/implications. Each field was compared in the performance analysis of document clustering. In result, the purpose statement of an abstract affected on the performance of journal article clustering more than any other fields. Furthermore, certain types of keywords were identified to be excluded in the document clustering to improve clustering performance, especially by Within group average clustering method. These keywords had stronger relationship to a specific abstract field such as research design than the topic of an article.

참고문헌

1

고영만. (2011). 연구문헌의 지식구조를 반영하는 의미기반의 지식조직체계에 관한 연구. 정보관리학회지, 28(1), 145-170.

2

윤보현. (2011). 개체명 기반 웹 문서 클러스터링에서 자질 조합 분석. 한국정보기술학회논문지, 9(3), 199-206.

3

이재윤. (2001). 클러스터링 성능 평가를 위한 비편향적 척도의 개발 (167-172). 한국정보관리학회.

4

조현양. (2004). 계층적 결합형 문서 클러스터링 시스템과 복합명사 색인방법과의 연관관계 연구. 한국문헌정보학회지, 38(4), 179-192.

5

Chen, C.. (2010). An integration of WordNet and fuzzy association rule mining for multi-label document clustering. Data & Knowledge Engineering, 69(11), 1208-1226. http://dx.doi.org/10.1016/j.datak.2010.08.003.

6

최상희. (2010). Document Clustering Using Reference Titles. 정보관리학회지, 27(2), 241-252.

7

Hahs-Vaughn, D. L.. (2009). Quality of abstracts in articles submitted to a scholarly journal : A mixed methods case study of the journal Research in the Schools. Library & Information Science Research, 32(1), 53-61. http://dx.doi.org/10.1016/j.lisr.2009.08.004.

8

Hartley, J.. (1997). Is it appropriate to use structured abstracts in social science journals?. Learned Publishing, 10(4), 313-317.

9

Hartley, J.. (1998). Is it appropriate to use structured abstracts in non-medical science journals?. Journal of Information Science, 24(5), 359-364.

10

Hartley, J.. (1999). Applying ergonomics to Applied Ergonomics. Applied Ergonomics, 30(6), 535-541.

11

Hartley, J.. (2000). Clarifying the abstracts of systematic reviews. Bulletin of the Medical Library Association, 88(4), 332-337.

12

Hartley, J.. (2003). Improving the clarity of journal abstracts in psychology. Science Communication, 24(3), 366-379.

13

Nakayama, T. (2005). Adoption of structured abstracts by general medical journals and format for a structured abstract. Journal of the Medical Library Association, 93(2), 237-242.

14

Sharma, S.. (2006). Structured abstracts: Do they improve the quality of information in abstracts?. American Journal of Orthodontics and Dentofacial Orthopedics, 130(4), 523-530.

15

Stevenson, H. A.. (2009). Structured abstracts: Do they improve citation retrieval from dental journals?. Journal of Orthodontics, 36(1), 52-60.

16

Zhu, S.. (2009). Field independent probabilistic model for clustering multi-field documents. Information Processing and Management, 45(5), 555-570. http://dx.doi.org/10.1016./j.jpm.2009.03.005.

정보관리학회지